Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission.
نویسندگان
چکیده
Na(+)-activated K(+) (K(Na)) channels are expressed in neurons and are activated by Na(+) influx through voltage-dependent channels or ionotropic receptors, yet their function remains unclear. Here we show that K(Na) channels are associated with AMPA receptors and that their activation depresses synaptic responses. Synaptic activation of K(Na) channels by Na(+) transients via AMPA receptors shapes the decay of AMPA-mediated current as well as the amplitude of the synaptic potential. Thus, the coupling between K(Na) channels and AMPA receptors by synaptically induced Na(+) transients represents an inherent negative feedback mechanism that scales down the magnitude of excitatory synaptic responses.
منابع مشابه
P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP
Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...
متن کاملMechanisms of modulation of AMPA-induced Na+-activated K+ current by mGluR1.
Na(+)-activated K(+) (K(Na)) channels can be activated by Na(+) influx via ionotropic receptors and play a role in shaping synaptic transmission. In expression systems, K(Na) channels are modulated by G protein-coupled receptors, but such a modulation has not been shown for the native channels. In this study, we examined whether K(Na) channels coupled to AMPA receptors are modulated by metabotr...
متن کاملFunctional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells.
In this study, we examined the functional coupling between Na(+)-activated potassium (KNa) channels and Na(+) influx through voltage-dependent Na(+) channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability (Po) of KNa channels increased with i...
متن کاملA highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter.
The bioelectrical properties and resulting metabolic demands of electrogenic cells are determined by their morphology and the subcellular localization of ion channels. The electric organ cells (electrocytes) of the electric fish Eigenmannia virescens generate action potentials (APs) with Na(+) currents >10 μA and repolarize the AP with Na(+)-activated K(+) (KNa) channels. To better understand t...
متن کاملArt - Greengard (E)
The neostriatum is critically involved in the control of movement. The activity of neostriatal neurons is regulated by two major inputs: a glutamatergic input from the cortex and a dopaminergic input from the substantia nigra. Ionotropic glutamate receptors mediate synaptic transmission and plasticity in the neostriatum through intrinsic ligand-gated ion channels. In contrast, dopamine receptor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 52 شماره
صفحات -
تاریخ انتشار 2008